Traductor: Paola Trenti L.
Revisor: Marcelo Melero Quiero hablarles sobre dos partidas de ajedrez. La primera fue en 1997, cuando Garry Kasparov, un humano, perdió ante Deep Blue, una máquina. Para muchos, este era el inicio de una nueva era, en la que las máquinas dominarían a los hombres. Sin embargo aquí estamos, 20 años después, y el mayor cambio en nuestra relación con las computadoras es el iPad, no HAL. La segunda partida fue durante un torneo de ajedrez libre, en 2005, en el que
hombre y máquina podían inscribirse como equipo y no como adversarios, si así lo deseaban. Al principio se tuvieron resultados predecibles; incluso un Gran Maestro derrotó a una supercomputadora con un computador portátil más bien de bajo desempeño.
La sorpresa llegó al final: ¿quién ganó? No un Gran Maestro con una supercomputadora, sino dos aficionados norteamericanos con tres portátiles más bien de bajo desempeño. Su habilidad para instruir y
manipular sus computadoras para explorar posiciones específicas en profundidad contrarrestó con eficacia
los conocimientos superiores en ajedrez de los Grandes Maestros
y el poder superior de computación de otros adversarios. Este es un resultado increíble: hombres promedio y máquinas convencionales que vencen
al mejor hombre, a la mejor máquina.
Y además, ¿no se supone que se trata del hombre contra la máquina? En cambio, se trata de cooperación
y del tipo correcto de cooperación. Durante los últimos 50 años, hemos prestado mucha atención a la visión que tiene Marvin Minsky de la inteligencia artificial Es una visión atractiva, por supuesto;
muchos la han adoptado. Se ha convertido en la escuela dominante de pensamiento en la ciencia de la computación. Pero a medida que entramos en la era de los grandes volúmenes de datos, de los sistemas de red, de las plataformas abiertas
y de la tecnología embebida, quiero sugerir que es tiempo
de reevaluar una visión alternativa que en realidad se desarrolló en la misma época. Me refiero a la idea de la simbiosis
humano-computadora, de J.C.R. Licklider, tal vez mejor llamada
«aumento de la inteligencia», o I.A. (en inglés) Licklider fue un titán de la informática
que tuvo un impacto profundo en el desarrollo de la tecnología
y de internet.
Su visión era la de habilitar la cooperación
entre hombre y máquina en la toma de decisiones,
y controlar situaciones complejas sin la dependencia inflexible de programas predeterminados. Fíjense en la palabra «cooperación». Licklider nos alienta, no a tomar un tostador y convertirlo en «Data», de «Star Trek», sino a tomar a un ser humano y hacerlo más capaz. Los humanos somos tan sorprendentes…
cómo pensamos, nuestros enfoques no lineales, nuestra creatividad, las hipótesis iterativas;
todo esto es muy difícil, si no imposible, para las computadoras. Licklider se dio cuenta de esto intuitivamente
al contemplar a los humanos establecer las metas, formular las hipótesis, determinar los criterios y realizar la evaluación. Por supuesto, los humanos somos muy limitados
en otras áreas. Somos muy malos para grandes escalas, volumen y para computar.
Necesitamos una gestión superior de talento para mantener al grupo de rock unido y tocando. Licklider previó que las computadoras
harían todo el trabajo rutinario que se necesitaba para preparar el camino
al conocimiento y la toma de decisiones. En silencio, sin mucha fanfarria, este enfoque ha ido acumulando triunfos
más allá del ajedrez. El plegamiento de proteínas, un tema que comparte con el ajedrez la increíble expansividad: hay más formas de plegar una proteína
que átomos en el universo.
Este es un problema capaz de cambiar el mundo
con enormes repercusiones en nuestra capacidad para comprender
y tratar las enfermedades. Y para esta tarea, la fuerza bruta de las supercomputadoras simplemente no basta. «Foldit», un juego creado por
científicos de la informática, ilustra el valor de este enfoque. Aficionados sin formación en tecnología ni biología
juegan un videojuego en el que reordenan visualmente
la estructura de la proteína, permitiendo que la computadora
se encargue de las fuerzas atómicas de las interacciones
y de identificar los problemas estructurales. Este enfoque ha vencido a las supercomputadoras
el 50 % de las veces y ha empatado con ellas el 30 %. «Foldit» realizó hace poco
un descubrimiento científico importante al descifrar la estructura del virus Mason-Pfizer de los monos. Una proteasa que no había podido ser determinada
en más de 10 años fue resuelta por tres jugadores en cuestión de días; tal vez el primer avance científico importante que haya surgido de jugar un videojuego. El año pasado, en el sitio de las Torres Gemelas, se inauguró el monumento 9/11.
Muestra los nombres de miles de víctimas, usando un hermoso concepto
llamado «colindancia significativa». Coloca los nombres uno junto a otro en función de las relaciones que tenían entre sí:
amigos, familias, compañeros de trabajo.
Hacer encajar todo es un considerable desafío computacional:
3500 víctimas, 1800 pedidos de colindancia, la importancia de
las especificaciones físicas generales y la estética final. En el primer informe de la prensa
se dio crédito total por tal hazaña a un algoritmo de una compañía de diseño
en Nueva York llamada «Local Projects».
La verdad es un poco más sutil. Si bien se utilizó un algoritmo
para desarrollar la estructura base, fueron seres humanos quienes usaron esa estructura
para diseñar el resultado final. Así que, en este caso, una computadora
evaluó los millones de diseños posibles,
manejó un sistema relacional complejo y monitoreó un gran conjunto de mediciones y variables, lo que permitió a los humanos enfocarse en el diseño y las alternativas de composición.
Entre más miren a su alrededor, más verán por todos lados la visión de Licklider. Ya sea la realidad aumentada en su iPhone
o el GPS en su auto, la simbiosis humano-computadora
nos está volviendo más capaces. Entonces, si quieren mejorar
la simbiosis humano-computadora, ¿qué pueden hacer? Pueden empezar por incluir al ser humano
en el diseño del proceso.
En vez de pensar qué hará una computadora
para resolver el problema, diseñen la solución en función de
lo que hará el ser humano también. Al hacer esto, pronto se darán cuenta de que han pasado todo su tiempo en la interfaz
entre hombre y máquina, específicamente en el diseño
para eliminar la fricción en la interacción. De hecho, esta fricción
es más importante que el poder del hombre o de la máquina para determinar la capacidad total. Es por eso que dos aficionados con unas cuantas computadoras portátiles vencieron fácilmente a una supercomputadora
y a un Gran Maestro. Lo que Kasparov llama proceso
es un subproducto de la fricción. Cuanto mejor sea el proceso,
menor será la fricción, y minimizar la fricción resulta ser la variable decisiva.
O bien, tomen otro ejemplo:
los grandes volúmenes de datos. Nuestras interacciones con en el mundo
se registran por una variedad de sensores cada vez mayor: teléfonos, tarjetas de crédito, computadoras.
El resultado es el gran volumen de datos; y en realidad nos ofrece la oportunidad de entender más profundamente la condición humana. El mayor énfasis de casi todos los enfoques
al alto volumen de datos se centra en: «¿Cómo almaceno estos datos?, ¿cómo busco estos datos?,
¿cómo proceso estos datos?» Estas preguntas son necesarias, pero insuficientes. El imperativo no es resolver cómo computar, sino qué computar.
¿Cómo se aplica la intuición humana sobre los datos a esta escala? De nuevo, empezamos por incluir al ser humano
en el diseño del proceso. En los inicios de la compañía «PayPal», su mayor desafío no fue:
cómo enviar y recibir dinero en línea, sino cómo enviarlo
sin ser estafado por el crimen organizado. ¿Por qué tanto desafío?
Porque las computadoras pueden aprender a detectar fraudes con base en patrones, pero no pueden aprender a hacerlo
con base en patrones que nunca han visto, y el crimen organizado tiene mucho en común con este público:
es gente brillante, incansablemente ingeniosa,
con un espíritu emprendedor…—(Risas)— y una diferencia enorme y muy importante:
sus intenciones.
Si bien las computadoras por sí solas pueden atrapar a todos los estafadores excepto a los más astutos, atrapar a los más astutos hace la diferencia
entre el éxito y el fracaso. Hay toda una clase de problemas como este,
que tienen adversarios adaptables. Rara vez presentan un patrón repetitivo
que las computadoras puedan discernir. Al contrario, hay un componente intrínseco
de innovación o disrupción, y se esconden cada vez más
entre el alto volumen de datos. El terrorismo, por ejemplo.
Los terroristas se adaptan siempre en mayor o menor medida a
circunstancias nuevas. Y a pesar de lo que puedan ver en la TV,
estas adaptaciones y su detección son fundamentalmente humanas. Las computadoras no detectan
patrones y comportamientos novedosos, pero los seres humanos sí. Los seres humanos,
al usar tecnología, al probar una hipótesis, al buscar entendimiento
al pedir a las máquinas que hagan cosas por ellos. La inteligencia artificial no atrapó
a Osama Bin Laden. Lo atraparon personas
entregadas, ingeniosas y brillantes en asociación con tecnologías varias. Aunque suene atractivo,
no se puede llegar a una respuesta haciendo minería de datos algorítmicamente.
No existe un botón que diga «Encontrar Terrorista»,
y mientras más datos integremos de una amplia variedad de fuentes y sobre una gran variedad de formatos de sistemas muy dispares,
menos efectiva será la minería de datos. En vez de esto, la gente tendrá que mirar los datos y buscar respuestas,
y como lo predijo Licklider hace tiempo, la clave de los grandes resultados
es la forma correcta de cooperación; y como lo notó Kasparov, eso significa minimizar la fricción en la interfaz. Este enfoque posibilita procesos como la exploración de todos los datos disponibles provenientes de fuentes muy diferentes, identificar relaciones clave
y ponerlas en un mismo lugar, algo que antes era casi imposible de hacer. Para algunos, esto conlleva consecuencias aterradoras para la privacidad y las libertades civiles.
Para otros, presagia una era de mayor protección de las mismas.
Pero, la privacidad y las libertades civiles
son de capital importancia. Esto tiene que ser reconocido,
y no se pueden dejar de lado ni con la mejor de las intenciones. Así que exploremos, mediante un par de ejemplos,
el impacto que las tecnologías construidas
para impulsar la simbiosis humano-computadora han tenido en los últimos tiempos. En octubre del 2007,
los EE. UU. y las fuerzas de coalición incursionaron en una casa de seguridad de Al Qaeda
en la ciudad de Sinjar en la frontera sirio-iraquí. Encontraron un tesoro de documentos: 700 esbozos biográficos
de combatientes extranjeros. Estos combatientes
habían dejado a sus familias en el golfo, en el Levante mediterráneo y el norte de África
para unirse a Al Qaeda en Iraq.
Estos registros
eran formularios de recursos humanos; los combatientes extranjeros
los completaban al unirse a la organización. Resulta que también Al Qaeda tiene su burocracia. (Risas) Respondían a preguntas como:
«¿Quién te reclutó?», «¿Cuál es tu ciudad natal?»,
«¿Qué ocupación buscas?» Con esta última pregunta,
se reveló un dato sorprendente. La gran mayoría de los combatientes extranjeros buscaban ser hombres bomba
para convertirse en mártires… De tremenda importancia, ya que entre 2003 y 2007, Iraq sufrió 1382 ataques suicidas,
una gran fuente de inestabilidad. Analizar estos datos fue difícil.
Los originales eran hojas de papel escritas en árabe
que debieron ser escaneadas y traducidas. La fricción en el proceso
no permitió obtener resultados significativos en un plazo de tiempo operativo
usando solo seres humanos, PDFs y tenacidad. Los investigadores debían
apoyar sus mentes humanas con tecnología para profundizar más,
para explorar hipótesis que no fuesen obvias, y de hecho, surgieron algunas revelaciones.
El 20 % de los combatientes extranjeros
provenían de Libia, un 50 % de ellos de una misma ciudad de Libia, de tremenda importancia,
ya que estadísticas previas lo calculaban en un 3 %. También ayudó a centrarse en un objetivo de creciente importancia en Al Qaeda,
Abu Yahya al-Libi, un clérigo de alto rango
en el grupo de combate libio-islámico. En marzo de 2007, este pronunció un discurso,
después del cual se produjo un repentino aumento
en la participación de combatientes libios. Quizás lo más ingenioso de todo, sin embargo,
y lo menos obvio, al darle vueltas en la cabeza a los datos,
los investigadores pudieron explorar en profundidad
las redes de coordinación en Siria que eran las responsables finales
de recibir y transportar a los combatientes extranjeros hacia la frontera.
Estas eran redes de mercenarios, no de ideólogos, que estaban en el negocio de la coordinación
por las ganancias. Por ejemplo, a los combatientes sauditas les cobraban considerablemente más que a los libios;
dinero que de otra manera habría sido para Al Qaeda. Tal vez el adversario interrumpiría su propia red si supiera que estaban engañando
a aspirantes a yihadistas. En enero de 2010, un terremoto devastador
de 7,0 grados sacudió Haití. El tercer terremoto más letal de la historia,
dejó un millón de personas, el 10 % de la población, sin hogar.
Un aspecto en apariencia pequeño
de la ayuda humanitaria global se volvió cada vez más importante cuando comenzó la entrega de agua y alimentos. Enero y febrero son los meses secos en Haití, pero en muchos campamentos
se habían formado aguas estancadas. La única institución con un conocimiento detallado de las llanuras aluviales de Haití
se había derrumbado durante el terremoto, con sus líderes dentro. Así que la pregunta era:
qué campamentos estaban en riesgo, cuánta gente había en esos campamentos,
cuáles eran los plazos de las inundaciones
y dados los muy escasos recursos e infraestructura, cómo priorizar el traslado. Los datos eran increíblemente dispares.
El ejército de los EE.UU. tenía información detallada
de solo una pequeña porción del país. Había datos en línea
de una conferencia de riesgo ambiental de 2006, otros datos geoespaciales,
nada de ello integrado. La meta humana
era identificar los campamentos a trasladar en función de las necesidades prioritarias.
La computadora debía integrar
una gran cantidad de información geoespacial, datos de los medios sociales
e información sobre la organización de ayuda humanitaria
para responder a esta pregunta. Mediante la implementación de un proceso superior,
lo que habría sido una tarea para 40 personas durante 3 meses,
se volvió un trabajo simple para 3 personas en 40 horas, todas victorias de la simbiosis humano-computadora. Han pasado más de 50 años
de la visión de Licklider para el futuro, y los datos sugieren que
deberíamos sentirnos muy emocionados de poder atacar
los problemas más difíciles del siglo, hombre y máquina cooperando juntos.
Gracias. (Aplausos) (Aplausos).